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Impact

s A multi-paradigm integrated framework for network
performance analysis: Maya

= A novel theory of network control and stability:HOT and FAST
= Adaptive network control using real-time simulations
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Maya: Multi-Paradigm Network Modeling
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| Multi-Paradigm Network Modeling

-

= Motivation

= Achieve appropriate balance between
=« model development time,
= model accuracy, and
= model solution time

= Provides an appropriate validation
environment

= Promotes easier extensibility of models
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Accomplishments (Packet Level Simulations)

) Simulate realistic Naval scenarios with 65 objects, up to 10X faster
than existing COTS tools

= Simulate networks that are 100x larger than can be simulated using
existing COTS tools.

= Accurate simulation of ad hoc networks with 100s of radios faster
than real time and detailed simulation of networks with up
to 10,000 communication devices.

= Technology commercialized into QualNet: in use by DoD units
including US Army CECOM, US Navy SPAWAR, and Future

Combat System (FCS) to design and analyze next generation
military comm networks.
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CECOM: Large Ad hoc network simulation:10,000 nodes
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CECOM: Integration with WarGaming
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I Accomplishments (Multi-Paradigm Modeling )

-

= Integration of fluid-flow models and detailed packet level
simulations for TCP Westwood (Demo 1)
= Joint work with Gerla & Paganini

= Integration of fluid-flow models with packet-level simulators
NS-2 and QualNet (Demo 2)
= Joint work with Amherst & Georgia Tech

= Integration of operational software with detailed packet-
level simulation for distributed applications, using both
sequential and parallel execution

= Extended backplane design to directly integrate fluid flow
models, discrete-event simulation & operational software
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| Talk Overview

™

J = Multi-paradigm modeling of TCP Westwood
= Analytical model based on fluid flow concept
= Discrete event model based on operational codes

= Hybrid model that integrate two different
modeling paradigms

= Multi-paradigm modeling framework

= Multiple simulators and analytical models
connected via backplane

= Demonstration overview
= Work in progress with timeframes
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TCP Westwood

TCP Westwood (TCPW) controls the window size
based on BSE (Bandwidth Share Estimation)

When three duplicate ACKs are detected:
+ set ssthresh=BE*RTT

(instead of ssthresh=cwin/2 as in Reno)

» if (cwin > ssthresh) set cwin=ssthresh

When a TIMEOUT expires:
+ set ssthresh=BE*RTT; set cwin=1;

(instead of ssthresh=cwnd/2 as in Reno)
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Bandwidth Estimation in TCP Westwood

]I

s Estimates Are Determined at TCP Sender Via
Sampling and Exponential Filtering Techniques

= Bandwidth Samples Are Determined from ACK
Arrival Process and Info Carried in ACKs

= BSE of TCP Westwood with UDP traffic
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TCP Westwood

) = Performance improvements shown for TCP-westwood
in links with high loss probability or long delays
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Performance Evaluation (2)
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| TCP Westwood -- Modeling

= 1CP Westwood implemented in QualNet as a
variant of TCP models

= Original QualNet TCP models are derived from
operational TCP (FreeBSD) codes: validated
(highest fidelity)

= Analytical model developed by Paganini et al

« Simulation model by Gerla, Sanadidi, et al

« Mixed analytical-simulation model by Takai,
et al
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Integration of TCPW Analytical Model and
I Packet Level Simulator

ﬁ = Allows more scalability compared to pure packet level
simulation

= Designates a wired sub-network of routers to be simulated
using analytical model (fluid-flow model)

= Other subnets and nodes are simulated by packet-level
simulator (QualNet)

del
QualNet
Subnets

QualNet
End nodes
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l TCP Westwood Analytical Model

] = Notations:

= Wi(t), Ri(t) - Window size and round trip time of ith TCP connection
= bi(t) - Estimated Bandwidth of ith TCP connection

= ((t)/C - Queueing delay at congested router

= p(x) - loss function for AQM policy

TCP Reno = T - one round trip delay TCP W'wood
\ = Window size of ith TCP Connection:
awi _ 1 WiWi(t=1) ) awi _ 1 _ Wi@-1) T T
a Rilg) 2Riga-m) dRilg) Riga-my )
= Queue Length estimate: ' dq N7
_:_ +
i=1 RZ(Q)

= Average Queue Length is an exponential average:

dx _In(l —a);(t) _In(t —a)g(t)

dt o o

= Bandwidth Estimation for the ith TCP Connection:
dbi:lﬁVi(l‘—T) 113()
dt T Ri(g) T
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: Integration Steps (1)

] 1. For each link from QualNet nodes to analytical section,
packets entering the section will be accumulated as input
data rates in each time interval:
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: Integration Steps (2)

o
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2. The analytical model will solve differential equations to
obtain network parameters such as queue lengths of

routers: i1 Wie-n)

dt  Ri(q) Ri(q(t—1))
dbi _ L Wit—n) 1y

p(x(t =) [Wi - ai [hi(?)]

= — —bi
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1 Integration Steps (3)

ﬁ 3. QualNet will estimate delays for each packet based on router
queue lengths, then schedule packet arrival events at exit
nodes at other side of analytical section:
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l Network Topology for Experiment

4

= QualNet nodes: 1, 6; Analytical section: nodes 2,3,4,5
= Analytical model Connection: Node 4 =) Node 2 = Node 3 =) Node 5

section
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| Validation

2

= Connections:
= 20 TCP Westwood connections from nodes 4 to 5
= 1 TCP Westwood connection from nodes 1 to 6

= [0 observe:

= Comparable transient and average queue lengths
at a specific node for both models
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Validation (2)

) = | he oscillations stabilize quickly

= Both models produce almost the same average queue
lengths over a short period of time
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Validation (3)

]I

= Greater differences at the beginning of the simulation
= This is due to the lack of slow start for the analytical model

= After a few seconds, the oscillations stabilize and both curves
look similar

= Both models produce almost the same average queue
lengths over a short period of time

= This shows that analytical model makes quite good
predictions
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l Multi-Paradigm Modeling Framework

Military; commercial

) MANET models device models

TCP models
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| Distributed Network Simulation: Approach

2

Partition the network to be simulated into sub-
networks.

Each sub-network is simulated by one simulator
Instance.

The simulator instances are inter-connected via a
dynamic simulation backplane

The simulator instances exchange messages at
runtime through the backplane to model packet
transmissions across sub-networks.
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| Current Implementation

.
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I Demo Overview
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| Future Work

= Hybrid model (mix of analytical and discrete event
models) has been implemented and verified with
pure discrete event models

= Extend model to derive end-end latency & throughput

=« Extend model to networks with hundreds of flows

= Generalize interface to incorporate diverse fluid flow models
=« Extend model to incorporate parallel DES

= Multi-Paradigm modeling Environment

= An enhanced dynamic simulation backplane that
supports more generic network topologies

= Incorporation of analytical network modeling tools
such as fluid flow based TCP models

= Incorporation of operational software
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